计算最小公倍数LCM

Lowest Common Multiple(LCM)
这是数论算法中的基础算法程序。

基于非递归的欧几里得算法(计算最大公约数GCD算法)来求解最小公倍数。

/*
 * 计算最小公倍数(Lowest Common Multiple,LCM)
 * 需要用到计算最大公约数的函数
 *
 * 两个数的乘积等于这两个数的最大公约数与最小公倍数的积。
 * 即(a, b)×[a, b]=a×b。
 * (a, b)表示a和b的最大公约数,[a, b]表示a和b的最小公倍数。
 *
 */

#include <stdio.h>

long gcd(long m, long n)
{
    for(;;) {
        if(n == 0)
            return m;
        long temp = m % n;
        m = n;
        n = temp;
    }
}

long lcm(long a, long b)
{
//    return a * b / gcd(a, b);
   return a / gcd(a, b) * b;

}

int main(void)
{
    printf("a=%d, b=%d, lcm=%ld\n", 18, 20, lcm(18, 20)); 
    printf("a=%d, b=%d, lcm=%ld\n", 15, 90, lcm(15, 90));
    return 0;
}

关键代码:

long gcd(long m, long n)  
{  
    for(;;) {  
        if(n == 0)  
            return m;  
        long temp = m % n;  
        m = n;  
        n = temp;  
    }  
}  
  
long lcm(long a, long b)  
{  
//    return a * b / gcd(a, b);  
   return a / gcd(a, b) * b;  
  
}  


  • 7
    点赞
  • 0
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值